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Abstract. We calculate the geometric phase associated with the time evolution of the wave function of a
Bose-Einstein condensate system in a double-well trap by using a model for tunneling between the wells.
For a cyclic evolution, this phase is shown to be half the solid angle subtended by the evolution of a unit
vector whose z-component and azimuthal angle are given, respectively, by the population difference and
phase difference between the two condensates. For a non-cyclic evolution, an additional phase term arises.
We show that the geometric phase can also be obtained by mapping the tunneling equations on to the
equations of a space curve. The importance of a geometric phase in the context of some recent experiments
is pointed out.

PACS. 02.40.Hw Classical differential geometry – 05.45.-a Nonlinear dynamics and nonlinear dynamical
systems

1 Introduction

Bose-Einstein condensation in a dilute gas of trapped ul-
tracold alkali atoms has been observed by several exper-
imental groups [1]. This gives rise to the possibility of
understanding the nature of the condensate wave func-
tion, and in particular, its phase [2]. It is believed that
this phase transition occurs due the breaking of a global
gauge symmetry of the Hamiltonian. A Bose-Einstein con-
densate (BEC) may be modeled by writing down the in-
teracting many-body Hamiltonian in terms of boson cre-
ation and annihilation operators Ψ †

op and Ψop. The order
parameter is postulated to be the condensate wave func-
tion ψ = 〈Ψop〉 = ρ eiθ, where ρ = |ψ|2 is the conden-
sate density and θ is the phase of the wave function. The
Hamiltonian is gauge invariant, but the order parameter
breaks this symmetry. Using the dynamical equation for
Ψop found from the Hamiltonian operator, the time evo-
lution of the condensate wave function ψ can be shown to
satisfy the following nonlinear Schrödinger equation, i.e.,
the Gross-Pitaevskii equation (GPE) [3]:

i�
∂ψ

∂t
= − �

2

2m
�2 ψ +

[
Vext(x) + g0|ψ|2

]
ψ, (1.1)

where Vext is the external potential and g0 = 4π�
2a/m,

a and m being the atomic scattering length and mass,
respectively. Although this equation has an underlying
quantum nature, the condensate has a macroscopic ex-
tent, suggesting the observation of quantum effects on a
macroscopic scale.
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In a striking experiment, Andrews et al. [4] have shown
the existence of the macroscopic quantum phase difference
between two BECs: they designed a double-well trap by
using a laser sheet to create a high barrier within a trapped
condensate. On switching off this barrier, the two con-
densates overlapped to produce an interference pattern,
showing phase coherence. More interestingly, by lowering
the laser sheet intensity, the barrier gets lowered, mak-
ing it possible for the condensates to tunnel through the
barrier. Thus this double-well trap is analogous to a su-
perconductor Josephson junction [5], and is referred to as
the Bose-Einstein Josephson junction (BJJ). In an inter-
esting paper, Smerzi et al. [6] have set up the tunneling
equations for the BJJ in a model. These are two coupled
nonlinear ordinary differential equations for the conden-
sate wave functions in the two wells. They have studied
the time evolution of the inter-well population difference
and phase difference in this model, and predicted a novel
‘self-trapping’ effect, i.e., the oscillation of the population
difference around a non-zero value, for certain initial con-
ditions and parameters. It must be mentioned that a sim-
ilar effect had been found by Kenkre and Campbell [7] in
the context of the discrete nonlinear Schrödinger equation.

The tunneling dynamics motivates the following ques-
tion: Is there an underlying geometric phase associated
with the time evolution of the condensate wave function
in a double-well trap? As is well-known by now, the con-
cept of a geometric phase has been studied in various
contexts, after it was introduced by Berry [8] in quan-
tum mechanics. It had also been considered much earlier
by Pancharatnam [9] in the context of classical optics.
Geometric phase and its various applications have been
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studied intensively for over a decade now [10]. Such a
(non-integrable) phase arises when the time evolution of a
system is such that the value of a variable in a given state
of the system depends on the path along which the state
has been reached. In this paper, we calculate the geomet-
ric phase associated with the time evolution of the BJJ
wave function, for both cyclic and non-cyclic evolutions.

The plan of the paper is as follows: in Section 2, we
briefly review the derivation of the tunneling equations
by Smerzi et al. [6]. Keeping in mind that the geomet-
ric phase is gauge-independent, we use a certain gauge
transformation to reduce these equations to a more con-
venient form. In Section 3, we outline the kinematic ap-
proach formulated by Mukunda and Simon [11] to define
the geometric phase as applied to a two-level system. We
then solve the BJJ tunneling equations, which are nonlin-
ear differential equations, numerically by choosing some
parameter values as an illustrative example. Using these
solutions, we find the geometric phase explicitly, for both
cyclic and non-cyclic evolution of the system. For a cyclic
evolution, the phase difference and the population differ-
ence between the condensates in the two wells return to
their original values. For this case, the corresponding ge-
ometric phase is half the solid angle generated by a unit
vector whose z-component and azimuthal angle are given,
respectively, by the population difference and the phase
difference. For non-cyclic evolution, an additional phase
term is obtained. In Section 4, we show that this geomet-
ric phase (for both types of evolution) can also be obtained
by first mapping the tunneling equations to the equation
for a unit vector r and then identifying it with the tangent
T of a space curve. The space curve is described using the
so-called natural frame equations, which possess an under-
lying natural gauge freedom. The unit triad of vectors can
be written down using the form of the condensate wave
functions in the two wells. The concept of Fermi-Walker
parallel transport is then used to identify the geometric
phase. In Section 5, we employ the usual Frenet frame to
obtain explicit expressions for the curvature and torsion
of the space curve that gets associated with the BJJ evo-
lution. In Section 6, we discuss some recent experiments
and summarize our results.

2 The BJJ tunneling equations

We begin by briefly describing the model used by Smerzi
et al. [6] to study the tunneling of the condensate between
two wells. Let the total number of atoms in the double-well
trap be N . Let N1 and N2 denote the number of atoms in
each well, such that N1+N2 = N . To study the tunneling,
the solution for the GPE (Eq. (1.1)) is assumed to be of
the form

ψ = ψ1(t)Φ1(x) + ψ2(t)Φ2(x). (2.1)

Here Φ1, Φ2 are the ground state solutions for the isolated
wells with N1 = N2 = (N/2). Using equation (2.1) in
equation (1.1) [6,12], and using a gauge transformation of
the form (

ψ1

ψ2

)
=

√
Nei

∫
η(t′)dt′

(
a
b

)
, (2.2)

the BJJ tunneling equations take on the form

i�
d

dt

(
a
b

)
=

(
�ω0 −V
−V −�ω0

) (
a
b

)
= Mω0

(
a
b

)
, (2.3)

with an appropriately defined η(t). Further, �ω0 can be
written as the sum of the asymmetry in the energies of
the bosons in the two wells and the interaction energy
between bosons in each well. V is a measure of the overlap
between the wave functions in the two wells.

From equation (2.2), we see that the normalization
condition |ψ1|2 + |ψ2|2 = N implies |a|2 + |b|2 = 1. Thus
without loss of generality, we write

a = cos(α/2) eiθ1 ; b = sin(α/2) eiθ2 . (2.4)

Let us denote the difference in the population density of
the two traps by z and the difference in the phases of the
two condensates by φ. From equation (2.4) we thus have,

z = (N1 −N2)/N = (|a|2 − |b|2) = cosα; φ = (θ2 − θ1).
(2.5)

By suitably combining equation (2.3) and its complex con-
jugate, and using equation (2.5), the nonlinear coupled
equations for z and φ are found to be (on setting � = 1)

dz

dt
= −V

√
1 − z2 sinφ (2.6a)

dφ

dt
= Λz + V

z√
1 − z2

cosφ+∆E. (2.6b)

Here ∆E is a measure of the asymmetry between the two
wells, Λ depends on the strength of the interaction be-
tween the Bose atoms in the condensate, and the time has
been reparametrized as t→ 2t.

It is interesting to note that the above equations can
also be written as Hamilton’s equations, by treating z
and φ as the canonically conjugate variables. The classical
Hamiltonian is easily verified to be

Hcl = Λ
z2

2
− V

√
1 − z2 cosφ+∆Ez. (2.7)

This describes a non-rigid or “momentum-shortened” pen-
dulum, since its length is proportional to

√
1 − z2, which

decreases with the “momentum” z. This system has been
studied in detail in [12]. In [13] the effect of an extra dissi-
pative term in the ż equation has been studied. A recent
review of tunneling in trapped BEC is given in [14].

At this point, a digressive remark is in order. The
derivation of equation (2.3) as given here is a certain ap-
proximation to the original theory. Strictly speaking, the
dynamical variables ψ1(t) and ψ2(t) must be identified
with bosonic operators a1 and a2 satisfying [a1, a

+
1 ] =

[a2, a
+
2 ] = 1, within an approach named space-mode ap-

proximation of the bosonic field operator, introduced by
Milburn et al. [15]. For large total boson numbers, the
mean-field limit becomes correct, thereby permitting the
substitution of a1 and a2 by ψ1(t) and ψ2(t) respec-
tively. Due to its semiclassical interpretation, this substi-
tution can be effected in a consistent way by relying on
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Fig. 1. Phase portrait of the BJJ evolution (Eq. (2.7)) for an
interacting Bose system with Λ = 0.5, in a symmetric trap.

the coherent-state variational picture of quantum dynam-
ics [16]. Recently, Buonsante et al. [17] have studied the
phase space of the two-well system as a special subcase of
a three-well system.

It is possible to write down the expression for ω0 as

ω0 = ∆E + Λz. (2.8)

Finally, setting z = cosα in equations (2.6a) and (2.6b),
we obtain

dα

dt
= V sinφ (2.9a)

dφ

dt
= Λ cosα+ V cotα cosφ+∆E. (2.9b)

Equations (2.9), or equivalently, equations (2.6), represent
the tunneling equations. Since the phase space plots of
this Hamiltonian system have not been displayed in the
literature, we include some illustrative examples here. We
consider two special limits of the Hamiltonian.

(i) Interacting Bose system in a symmetric trap: here,
Λ �= 0, ∆E = 0. Thus equation (2.7) becomes Hcl =
Λ z2

2 − V
√

1 − z2 cosφ. In Figures 1, 2 and 3, we have ob-
tained the (z, φ) phase portraits for this case. Let Λ be
replaced by the dimensionless quantity (Λ/V ). For Λ < 1
there exist periodic oscillations around the zero-state (0, 0)
and the non-trapped π state (0, π). There are no rota-
tional states (see Fig. 1 for Λ = 0.5). For Λ > 1 two
new trapped π-states appear at (z∗, π) and (−z∗, π) with
z∗ =

√
Λ2 − 1/Λ. The trapped π-states are clearly visible

in Figure 2 (Λ = 1.3). As Λ increases, z∗ → 1. For Λ > 2,
rotational states also appear as seen in Figure 3 (Λ = 5).

(ii) Non-interacting Bose system: Λ = 0. In this limit
the kinetic energy term of the Hamiltonian Hcl (2.7) van-

Fig. 2. Phase portrait of the BJJ evolution (Eq. (2.7)) for an
interacting Bose system with Λ = 1.3, in a symmetric trap.
The trapped states at φ = π are clearly visible here.

Fig. 3. Phase portrait of the BJJ evolution (Eq. (2.7)) for an
interacting Bose system with Λ = 5.0, in a symmetric trap.

ishes and hence the momentum-shortened pendulum anal-
ogy is not valid anymore. The equations are the same
as semiclassical two level atom equations. We get Hcl =
−V√

1 − z2 cosφ+∆Ez. When ∆E = 0, we have a sym-
metric trap and the behavior is rather similar to that
in Figure 1, with no rotational orbits. With an increase
in ∆E, rotational orbits appear, which explore the full
range of φ. This is shown in Figure 4. The oscillations are
now around (z = −z∗, φ = 0) and (z = +z∗, φ = ±π).
That is, oscillations around φ = 0 shift towards z = −1
which is energetically more stable, while the φ = π fixed
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Fig. 4. Phase portrait of the BJJ evolution (Eq. (2.7)) for
a non-interacting Bose system in an asymmetric trap with
∆E = 0.5.

point moves towards z = 1 which is a local energy
maximum. Note that the increase in ∆E causes a non-
trapped π state to become a trapped π state with oscilla-
tions around a non-zero population difference z∗. The new
fixed point is given by z∗ =

√
((∆E/V )2/(1 + (∆E/V )2))

which tends to 1 as ∆E/V goes to infinity.
We now proceed to show how the geometric phase as-

sociated with the BJJ dynamics can be computed.

3 Geometric phase using the kinematic
approach

In this section we derive the expression for the geometric
phase for the BJJ evolution using the kinematic approach
developed by Mukunda and Simon [11]. Invoking the prin-
ciple of gauge invariance, they obtain the geometric phase
as the difference between the total phase and the dynam-
ical phase as follows:

φg = arg(ψ(0), ψ(T )) − Im
∫ T

0

dt (ψ(t), ψ̇(t)). (3.1)

The first term in equation (3.1) is easily identified as the
total phase

φp = arg(ψ(0), ψ(T )), (3.2a)

while the second term in equation (3.1) is the dynamical
phase

φd = Im
∫ T

0

dt (ψ(t), ψ̇(t)). (3.2b)

Let us now calculate expression for the geometric phase
for the BJJ evolution equations. The family of unit vectors

is given by,

ψ =
(
a
b

)
= eiθ1(t)

(
cos 1

2α(t)

sin 1
2α(t) eiφ(t)

)

= eiθ1(t)ψ, (3.3)

where φ = (θ2 − θ1). Using equation (3.3) in equa-
tion (3.2a), a short calculation leads to the following total
phase:

φp = arg(ψ(0), ψ(T )) = (θ1(T ) − θ1(0)) +∆. (3.4)

Here,
∆ = tan−1[µ/ν], (3.5)

where

µ = sin(α(0)/2) sin(α(T )/2) sin(φ(T ) − φ(0))

and

ν = cos(α(0)/2) cos(α(T )/2)
+ sin(α(0)/2) sin(α(T )/2) cos(φ(T ) − φ(0)).

The integrand of the dynamical phase φd can be calculated
using equation (3.3) in equation (3.2b) to give

Im
(
ψ,
dψ

dt

)
= θ̇1 + sin2(α/2)φ̇. (3.6)

Thus

φd = (θ1(T ) − θ1(0)) +
∫ T

0

sin2(α/2)φ̇ dt. (3.7a)

From equations (3.4) and (3.7a), we get the geometric
phase to be

φg = φp − φd = −
∫ T

0

sin2(α/2)φ̇ dt+∆. (3.7b)

For a cyclic evolution, it is clear from (3.7b) that ∆ = 0.
Hence the geometric phase is just minus half the solid
angle Ω subtended by the closed curve generated on a
sphere by the tip of a unit vector r:

r = (sinα cosφ, sinα sinφ, cosα). (3.8)

Here, α and φ denote the polar and azimuthal angles of r.

An example

As an example we consider an interacting Bose system
with Λ = 5, in a symmetric trap, i.e., ∆E = 0, whose
phase space portrait is given in Figure 3. The value of
Λ selected is quite generic because further increase in Λ
does not change the character of the phase-space portrait
much, apart from moving the π-state towards z = 1. Since
cosα = z, the geometric phase φg given in equation (3.7b)
can be re-expressed as

φg =
1
2

∫ T

0

(z − 1)φ̇ dt+∆. (3.9)



R. Balakrishnan and M. Mehta: Geometric phase in a Bose-Einstein-Josephson junction 441

Fig. 5. The BJJ evolution of the unit vector r (see Eq. (4.2))
on the unit sphere: Paths corresponding to a librational or-
bit and a rotational orbit (labeled r and l respectively in the
plot) in the phase space portrait of the BJJ Hamiltonian for a
symmetric trap with Λ = 5.0 (see Fig. 3) are shown.

Fig. 6. Evolution of the geometric phase φg as a function of
time over a period for a librational orbit (oscillation about the
zero-state) at Λ = 5.0, with initial conditions (z, φ) = (0.3, 0)
corresponding to orbit l in Figure 5.

While computing the geometric phase from the above
equation, it is necessary to keep in mind that in equa-
tions (2.6), the time has been reparametrized, and so one
has to use the appropriate value of time in equation (3.9).
We solve equations (2.6) numerically for (z(t), φ(t)), for
a given initial condition (z(0), φ(0)) at time t = 0. Using
these solutions, we find the solutions for the correspond-
ing unit vectors r given in equation (3.8). These yield the
the path on the unit sphere plotted in Figure 5. Next, we
substitute the solution for (z(t), φ(t)) in equation (3.9),
to find φg(t) numerically, for various times t, in the range
0 ≤ t ≤ T , where T denotes the full period of the orbit
concerned. Our plot for the time dependence of φg(t) over
a period for a librational orbit is given in Figure 6, while
Figure 7 gives that plot for a rotational orbit.

We conclude this section with the following remark.
There exists an interesting geometrical representation of
a two level system in terms of the time evolution of a

Fig. 7. Evolution of the geometric phase φg as a function
of time over a period for a rotational orbit at Λ = 5.0 with
initial conditions (z, φ) = (0.9, 0) corresponding to orbit r in
Figure 5.

unit vector r. In the next section, we identify r with the
tangent of a space curve, and provide a classical differen-
tial geometric approach to derive the geometric phase φg

associated with the BJJ evolution.

4 Geometric phase using space curve
approach

In this section, we derive the geometric phase associated
with the BEC tunneling dynamics by providing a geo-
metric visualisation of this two level system. Firstly it is
possible to show [18] that the tunneling equations for the
two-level wave function (3.3), which we rewrite below for
convenience as

ψ =
(
a
b

)
= eiθ1

(
cos(α/2)

sin(α/2) eiφ

)
, (4.1)

can be mapped to the following vector evolution equation

dr/dt = ω × r. (4.2)

Here, in Cartesian coordinates,

ω = (−2V, 0, 2ω0) (4.3)

r = (a∗b+ ab∗, i(ab∗ − a∗b), |a|2 − |b|2). (4.4)

Using the definitions a and b given in equation (2.4), equa-
tion (4.4) is readily seen to be identical to the unit vector r
in equation (3.8).

While discussing two-level systems, adiabatic, cyclic
evolutions and Berry’s phase, Urbantke [19] has shown
that given a unit vector of the form (4.4), two more
unit vectors P′, Q′ can be defined, such that the set
(r,P′,Q′) forms a unit orthogonal right-handed triad.
This is achieved by defining a complex vector Z′ as follows:

Z′ = P′ + iQ′ = ((a2 − b2), i(a2 + b2),−2ab). (4.5)
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On using definitions of a and b in equation (4.5), we get,

Z′ = e2iθ1
(
cos2(α/2) − sin2(α/2)e2iφ,

i
(
cos2(α/2) + sin2(α/2)e2iφ

)
,− sin(α)eiφ

)
. (4.6)

By writing down the real and imaginary parts of equa-
tion (4.6), it can be easily verified that,

|r| = |P′| = |Q′| = 1; r ·P′ = r ·Q′ = P′ ·Q′ = 0. (4.7)

Clearly, as r evolves with time, so does the (P′,Q′) plane.
We find the geometric phase as follows.

Firstly, as is obvious, the total phase Γp accumulated
by Z′(t) in time T is given by,

Γp = arg(Z′(0)∗ · Z′(T )). (4.8)

Substituting for Z′ from equation (4.6) into equation (4.8),
after some algebra we obtain,

Γp = 2[(θ1(T ) − θ1(0)) +∆]. (4.9)

A comparison with the expression for the total phase in
Section 3 shows that

Γp = 2φp (4.10)

φp being the total phase of ψ in the kinematic approach.
Next, we find the total phase rotation γp associated

with the rotation of P′ or (Q′) as follows. It is defined by

cos γp = P′(T ) · P′(0) = Q′(T ) ·Q′(0).

Further, it is easy to see geometrically that P′(T )·Q′(0) =
−Q′(T ) · P′(0) = sin γp. Substituting Z′ = P′ + iQ′ in
equation (4.8) and using the above relations, we can show
that the total phase

γp = −Γp = −2[(θ1(T ) − θ1(0)) +∆], (4.11)

where we have used equation (4.9).
Next we wish to find the dynamical phase γd associated

with (P′,Q′) rotation, which is induced by the specific
dynamical equations of the frame (r,P′,Q′). This is a
little more involved, and we proceed as follows.

From equation (4.6), we have

Z′ = e2iθ1Z. (4.12)

This immediately leads to

P′ + iQ′ = e2iθ1(P + iQ). (4.13)

Comparing this with equation (4.6) yields

P = (cos2(α/2) − sin2(α/2) cos 2φ,− sin2(α/2) sin 2φ,

− sinα cosφ), (4.14a)

Q = (− sin2(α/2) sin 2φ, cos2(α/2) + sin2(α/2) cos 2φ,

− sinα sinφ). (4.14b)

It can be easily verified that (r,P,Q) is also a right-
handed triad.

A short calculation using equations (3.8) and (4.14)
shows that we can write

dr/dt = XP + YQ, (4.15)

where

X =
(
dα

dt

)
cosφ−

(
sinα

dφ

dt

)
sinφ, (4.16a)

Y =
(

sinα
dφ

dt

)
cosφ+

(
dα

dt

)
sinφ. (4.16b)

Obviously, there is a gauge freedom 2θ1 in the choice of
(P,Q). We immediately see this from equation (4.13):

P′ = P cos β − Q sinβ (4.17a)

Q′ = P sinβ + Q cosβ, (4.17b)

where
β = 2θ1 (4.18)

represents the gauge freedom. Using equations (4.17), we
solve for (P,Q) in terms of (P′,Q′). Substituting them in
equation (4.15) yields

dr
dt

= α1P′ + α2Q′ (4.19)

where

α1 =
dα

dt
cos(φ+ β) −

(
sinα

dφ

dt

)
sin(φ+ β), (4.20a)

α2 =
dα

dt
sin(φ+ β) +

(
sinα

dφ

dt

)
cos(φ+ β). (4.20b)

Since (r,P′,Q′) is an orthonormal triad, equation (4.19)
immediately implies,

dP′

dt
= −α1r + α3Q′ (4.21)

dQ′

dt
= −α2r− α3P′ (4.22)

where α3 is to be determined. In the space curve lan-
guage, if r is identified with the tangent T, then α1 and
α2 are the components of the curvature vector dT/dt along
P′ and Q′ respectively. Further, equations (4.19), (4.21)
and (4.22) describe the equations for a space curve in a
“natural frame” (T,P′,Q′). We remark that the Frenet
frame [20] corresponds to α2 = 0, P′ is the normal n,
Q′ is the binormal b. Further, α3 is the torsion τ and
α1 is the curvature K. On setting α2 = 0, we get from
equation (4.20), the following “Frenet gauge” βF :

tan(βF + φ) = sinα
dφ

dt

/(
dα

dt

)
. (4.23)
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Working with the natural frame, a short calculation using
equations (4.15) to (4.18) yields,

α3 = T · (Ṫ × T̈)/|Ṫ|2 − d

dt
tan−1

(
α2

α1

)
. (4.24)

Next using the Cartesian representation of T = r given in
equation (4.4), a lengthy but straightforward calculation
leads to,

T·(Ṫ×T̈)/|Ṫ|2 = cosα
dφ

dt
+
d

dt
tan−1

[
sinαdφ

dt
dα
dt

]

. (4.25)

Substituting equation (4.25) and (4.20) in equation (4.24)
and using the formula tan−1A − tan−1B = tan−1((A −
B)/(1 +AB)), we obtain,

α3 = cosα
dφ

dt
− d(φ + β)

dt
= −2 sin2 α

2
dφ

dt
− dβ

dt
. (4.26)

Note that the time derivative of the gauge freedom β(t)
appears in α3.

We write equations (4.19), (4.21) and (4.22) in a com-
pact form,

dT
dt

= ξ × T;
dP′

dt
= ξ × P′;

dQ′

dt
= ξ × Q′. (4.27)

Here ξ is given by,

ξ = α3T + α1Q′ − α2P′. (4.28)

Equations (4.27) show that the natural frame (T,P′,Q′)
rotates with an angular velocity ξ, as it moves along the
space curve. As is obvious, α1 and α2 are components of
ξ along the Q′ and P′ axes respectively and hence tilt the
(P′,Q′) plane. On the other hand, α3 merely rotates this
plane around T. Thus in time T , the (P′,Q′) plane gets
rotated by an angle γd =

∫ T

0 α3dt. Such a frame is defined
using Fermi-Walker parallel transport as [21],

DAi

dt
= {(α1Q′ − α2P′) ×A}i.

Using the expression for α3 given in (4.26) we obtain the
dynamical phase γd associated with (P′,Q′) plane to be

γd =
∫ T

0

α3dt = −2
∫ T

0

(
sin2 α

2

) dφ

dt
dt−2(θ1(T )−θ1(0)),

(4.29)
since β = 2θ1, from equation (4.18).

Subtracting equation (4.29) from the expression for the
total phase γp given in equation (4.11) we obtain the ge-
ometric phase γg associated with (P′,Q′) rotation to be

γg = γp − γd = 2

[∫ T

0

(
sin2 α

2

) dφ
dt

dt−∆

]

. (4.30)

Note that the term involving the gauge freedom β cancels
out here too, as in the kinematic approach. Comparing
equation (4.30) with the expression for φg, we see that

γg = −2φg.

In other words, the geometric phase φg associated with
the wave function is minus half of that associated with
the (P′,Q′) rotation. Note that equation (4.30) is valid for
non-adiabatic as well as non-cyclic evolutions. For a cyclic
evolution, ∆ = 0. Here, on computing γg, the geometric
phase φg becomes just minus half the solid angle, as is well
known. In summary, by mapping the evolution equation
for the wavefunction to the dynamical equation for an
orthonormal triad (T,P′,Q′) and identifying the triad to
be a natural frame on a space curve, enables us to provide
a purely geometrical visualisation of the geometric phase
of a two level system.

Our general result is valid for any two level system
with the wavefunction (4.1), since we did not use the spe-
cific BJJ equations (4.2) and (4.3) in its derivation. By
finding the solutions α(t) and φ(t) for the nonlinear equa-
tions numerically for given initial conditions, γg can be
computed and is exactly −2φg, with φg values as plotted
in Figures 6 and 7.

5 Geometric parameters associated
with BJJ dynamics

In the last section, we discussed the mapping of the BJJ
tunneling equations to a space curve which is described
using equations for a “natural frame”. This description
involves three geometrical parameters αi which are shown
to depend on a gauge parameter β (see Eqs. (4.20)
and (4.24)).

The usual description of a space curve is in terms of
a Frenet frame [20], with the curvature K and torsion τ
as the geometric parameters. As explained in Section 4,
working with the Frenet frame implies fixing β = βF , de-
fined in equation (4.23). In this section we work with the
Frenet frame to determine the geometric parameters K
and τ of the space curve associated with the BJJ dynam-
ics, in terms of the physical parameters V,∆E and Λ and
discuss certain special cases of interest.

As mentioned in Section 4, in the Frenet frame, α1 =
K, α2 = 0, α3 = τ, P = n and Q = b in equations (4.15)
to (4.17). In this frame, we have the usual Frenet-Serret
equations [20],

dT
dt

= Kn,
dn
dt

= −KT + τb;
db
dt

= −τn. (5.1a)

Thus,

dT
dt

= ξF × T;
dn
dt

= ξF × n;
db
dt

= ξF × b. (5.1b)

Also,

K2 =
(
dT
dt

)2

= sin2 α

(
dφ

dt

)2

+
(
dα

dt

)2

(5.2)

and

τ = T · (Ṫ × T̈)/K2 = cosα
dφ

dt
+
d

dt
tan−1

(
sinαdφ

dt
dα
dt

)

,

(5.3)
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where the Cartesian representation (3.8), T = r has been
used. On using expressions for dα/dt, dφ/dt given in equa-
tions (2.9), in equations (5.2) and (5.3) respectively, we get

K = 2(V 2 + �
2ω2

0 sin2 α− V 2 sin2 α cos2 φ

+ 2V �ω0 cosα sinα cosφ)1/2, (5.4)

and

τ = cosα(�ω0 + V cotα cosφ)

+
d

dt
tan−1

(
�ω0 sinα+ V cosα cosφ

V sinφ

)
. (5.5)

Equations (5.4) and (5.5) give the curvature and torsion
of the space curve created by the BJJ dynamics with pa-
rameters V and �ω0, which in turn are defined in terms
of the condensate parameters.

Since r is identified with T, we also have, for the BJJ
system,

dT
dt

= ω × T, ω = (−2V, 0, 2ω0). (5.6)

From equation (4.2) therefore K2 can also be written as,

K2 =
(
dT
dt

)2

= (ω)2 − (ω · T)2. (5.7)

Using the definition of Mω0 given in equation (2.3), a sim-
ple calculation shows that 2〈Mω0〉 = ω ·T, yielding

4〈M2
ω0
〉 = (ω)2. (5.8)

Using equation (5.8) in equation (5.7), we get

K = 2(〈M2
ω0
〉 − 〈Mω0〉2)1/2. (5.9)

Now from the first equation in equation (5.1) it is clear
that the distance traveled by the tip of T on the unit
sphere in time dt is ds = Kdt.This is the well-known [22]
Fubini-Study metric. Thus we see that the curvature K
which determines the geometric quantity ds is given by
the variance of the tunneling matrix Mω0 for a two level
system. As seen from the equation (5.3), the torsion in-
tegral

∫
τdt measures the anholonomy of the frame, i.e.

a path dependent geometric quantity given by the solid
angle associated with a cyclic evolution of T.

Recalling that the population density difference be-
tween the two traps is given by z and the phase difference
by φ, it is instructive to write the geometric quantities K
and τ in terms of these physical quantities and the system
parameters V,∆E and Λ: from equation (5.4),

K = 2(V 2 + (∆E + Λz)2(1 − z2) − V 2(1 − z2) cos2 φ

+ 2V (∆E + Λz)z
√

1 − z2 cosφ)1/2. (5.10)

After a short calculation K can be written as,

K = 2

[

V 2 + (∆E + Λz)2 −
(
Hcl +

Λz2

2

)2
]1/2

, (5.11)

where Hcl is the effective classical Hamiltonian given in
equation (2.7), which leads to the integrable dynamics of
z and φ. Next from equation (5.5) we obtain τ :

τ = z

(
∆E + Λz +

V z√
1 − z2

cosφ
)

+
d

dt
tan−1 (∆E + Λz)

√
1 − z2 + V z cosφ
V sinφ

. (5.12)

Using the expression for Hcl once again, we get

τ = Hcl +
Λz2

2
+

V√
1 − z2

cosφ

+
d

dt
tan−1 (∆E + Λz)

√
1 − z2 + V z cosφ
V sinφ

. (5.13)

We consider some special cases.
(1) Interacting Bose system with no external poten-

tial: (V = 0, Λ �= 0). From equation (2.6a), setting V = 0,
we get z = constant. This in turn yields τ = Hcl+Λz2/2 =
constant and K = 2(∆E + Λz)

√
1 − z2 = constant i.e.,

the underlying geometry is that of a circular helix with a
constant pitch.

(2) The ideal Bose gas in an external potential: (Λ = 0,
V �= 0). If one considers a non-interacting Bose system
then setting Λ = 0 in equation (2.7), we get

Hcl = −V
√

1 − z2 cosφ+∆Ez. (5.14)

We note that the tunneling Hamiltonian resembles that of
a two-component BEC in the rotating frame approxima-
tion [25]. From equation (5.13), we see that,

τ = Hcl +
V√

1 − z2
cosφ

+
d

dt
tan−1 ∆E

√
1 − z2 + V z cosφ
V sinφ

. (5.15)

Further, from equation (5.11),

K = 2(V 2 + (∆E)2 −Hcl)1/2. (5.16)

Since Hcl is a constant under time evolution, equa-
tion (5.16) shows that the curvatureK is a constant. How-
ever, the torsion τ is time-dependent in this case. Since K
is a constant, the path length on the unit sphere as given
by the Fubini-Study metric is linearly dependent on time
for this case. (If V and ∆E are made time dependent, then
K is not a constant any more.)

(3) The linear limit. For a symmetric trap with ∆E =
0 in the small oscillations limit, linearizing equations (2.6)
in both z and φ, for |z| � 1, |φ| � 1, we get,

dz

dt
= −V φ, dφ

dt
= (Λ+ V )z, (5.17)

and

H = (Λ+ V )
z2

2
+ V

φ2

2
.
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This is just the harmonic oscillator limit and analytical
solutions are known. The corresponding expressions for K
and τ can be calculated using equations (5.11) and (5.12).

(4) The rigid pendulum limit. For a symmetric trap
with ∆E = 0, linearizing equations (2.3) in z only, with
Λ 	 1 we get the equations of a pendulum with fixed
length,

dz

dt
= −V sinφ

dφ

dt
= Λz. (5.18)

As is well-known the solutions for z can be written in
terms of Elliptic functions thus K and τ can be obtained
from equations (5.11) and (5.12).

Finally, for a symmetric trap ∆E = 0, with no lin-
earizing approximations, though the analytical solution
of equations (2.6) can be found [12], it is easier to work
with numerical solutions instead, using which K and τ
can be computed numerically using the expressions (5.11)
and (5.12).

6 Summary of results and possible
experiments

The geometric phase associated with the time evolution
of the wave function of a Bose-Einstein condensate in a
double well trap has been found using a quantum ap-
proach. We have explicitly computed the geometric phase
φg for both cyclic and noncyclic evolutions of the con-
densate population density difference z and phase differ-
ence φ in the two wells, by taking an example. We have
shown that the geometric phase can also be derived using
a classical differential geometric approach, by essentially
mapping the evolution of the two states to a framed space
curve with natural moving frames along the curve. The
unit tangent vector r to the curve has α = cos−1 z as
the polar angle and φ as the azimuthal angle. As we have
shown, here the geometric phase arises due to the path-
dependent rotation of the frame perpendicular to r as the
system evolves in time.

It should be noted that r defined in equation (4.4)
has a (classical) angular momentum form in the sense
that its components are the classical counterparts of
the Schwinger two-boson realization of the angular-
momentum picture employed by some authors [23]. This
could lead to some useful links between these papers and
our work.

We remark that in a recent paper, Liu et al. [24] have
obtained some interesting results in the adiabatic the-
ory of nonlinear evolution of quantum states. By apply-
ing their elegant analysis to the example of a tunneling
model of a Bose-Einstein condensate, they have shown
that when the non-eigenstates are evolved adiabatically,
the Aharonov-Anandan phases play the role of classical
canonical actions. In comparison, our work is concerned
with nonadiabatic evolution of non-eigenstates. Further,
our methodology is based on the study of the geometry
of the system by mapping it to a space curve with an
associated frame-field, and is quite distinct from theirs.

In an experimental set up, suppose one designs a
double-well trap by creating a barrier within a trapped
condensate with N atoms, using a laser sheet. We pro-
pose that in an actual experiment, immediately after cre-
ating the laser sheet barrier, if the density difference and
the phase difference between the condensates in the two
traps can be measured as a function of time, then by
substituting these experimentally measured functions in
equation (3.9), the associated geometric phase φg can be
determined. As φg will depend on system parameters as
well as initial conditions, this experiment would enable one
to study the variation of φg with trap parameters, which
would be useful in designing appropriate experiments to
measure it.

Another type of experiment to study tunneling be-
tween condensates, proposed by Williams et al. [25], hinges
on the fact that it has become possible to confine a two-
component Bose condensate in the same trap, as follows.
Hall et al. [26] first trapped and cooled 87Rb atoms in
a magnetic trap in the |f = 1,mf = −1〉 hyperfine
state. After condensation, it is possible to populate the
|f = 2,mf = 1〉 hyperfine state through a two-photon
transition. In the presence of a weak magnetic field, these
states are separated in energy by ωo (say). Thus two dif-
ferent hyperfine states can exist in the trap. A weak two-
photon driving pulse is applied which couples the two
states and consequently, atoms can “tunnel” between the
two condensates. In this model, it has been shown [25]
that in the mean field approximation, one obtains cou-
pled equations for z(t) and φ(t) almost identical in form
to equations (2.7), but with Λ = 0 (i.e., non-interacting)
with the other parameters appropriately defined for the
model. Hence all our results for the geometric phase are
applicable here as well.

Recently, Fuentes-Guirdi et al. [27] have proposed a
method for generating a geometric phase in a coupled two-
mode Bose Einstein condensate, starting with a Hamilto-
nian for two condensates existing in different hyperfine
states. In addition to the experiments of Hall mentioned
above, condensates of 87Rb atoms in hyperfine states
|f = 1,mf = 1〉 and |f = 2,mf = 2〉 have been produced
experimentally [28]. Likewise, condensates of 23Na atoms
with |f = 1,mf = 1〉 and |f = 1,mf = 0〉 have also
been created [29]. Using the Schwinger angular momen-
tum representation, the Hamiltonian describing two cou-
pled hyperfine states |A〉 and |B〉 can be expressed in the
form [27]

Hhf = α0Jz + β0J
2
z + γ0[Jx cosφD + Jy sinφD]. (6.1)

Here, (Jx, Jy, Jz) are the components of an effective ‘meso-
scopic’ spin J, since it can be shown that J is proportional
to the total number of atoms N in the condensate, which
is of the order of 104. In equation (6.1), φD = D t, D be-
ing the detuning frequency of the laser which couples the
two hyperfine states. Further, α0 and β0 are system pa-
rameters and γ0 is the strength of the laser-induced drive
term that couples the two levels.

Interestingly, if we write the components of J in the
form J = (Jx, Jy, Jz) = J(sinα cosφ, sinα sinφ, cosα) in
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equation (6.1), then on setting φD = 0, Hhf/J becomes
identical to our Hamiltonian in equation (2.7), on iden-
tifying α0 = ∆E, β0 = Λ/2 and γ0 = −V . Conversely,
if an external driving field phase φD is subtracted from
φ in equation (2.10), we would essentially obtain equa-
tion (6.1). Thus our results for the geometric phase will
be valid for that case too, with the appropriate parameters
substituted.

It would be of interest to measure geometric phase
more directly, for the BJJ. In the context of supercon-
ductor Josephson Junctions, the geometric phases for
adiabatic [30,31] and nonadiabatic evolutions [32] have
been studied. In analogy with that discussion, we write
our Hamiltonian (2.7) as H = (−1/2)B · σ, where for
the noninteracting case, our fictitious magnetic field is
B = (−V, 0, ∆E). By tuning the laser sheet parameters
appropriately, we can take the system through a cyclic
path on the Bloch sphere (see Fig. 2 in Ref. [32]), the
path being made up of geodesic curves which have van-
ishing dynamic phase. If the interference pattern is then
studied, the measured relative phase is therefore just the
geometric phase. The effect of noise on geometric phases
has been discussed in [33].

Experimental techniques to create two condensates
in close proximity have been suggested recently [34] in
the context of producing a continuous source of a Bose-
Einstein condensate. It would be interesting to study the
tunneling between the condensates in such a set up, if
feasible.

Geometric phases have been recently shown to have
relevance in the implementation of fault-tolerant quan-
tum computation [35,36], and in the creation of vortices
in a condensate [37]. We hope that our results will have
applications in these contexts as well.

We thank Subodh Shenoy for his constructive comments on our
manuscript. We also thank Biao Wu for bringing Ref. [24] to
our attention. RB is an Emeritus Scientist (CSIR, India). MM
is presently at the Institute for Plasma Research, Gandhinagar,
India.
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